Solution-Phase Parallel Synthesis of Diverse 1,5-Benzodiazepin-2-ones

Hai-Yan Zhao and Gang Liu*
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2 Nanwei Rd, Xuanwu Dist., Beijing 100050, P. R. China

Received July 16, 2007

Abstract

A practical and efficient parallel method has been developed for the synthesis of 1,5-benzodiazepin-2-ones with a large variety of substituents at the 3 -, $4-, 5-, 7$-, and 8 -positions using 1,5 -difluoro-2,4-dinitrobenzene as the starting material. All the reactions involved here are highly effective in giving the desired products under mild conditions.

Introduction

Benzodiazepines are the prototypical privileged substructure. It was this class of compounds to which the term "privileged structure" was first applied by Evans et al. ${ }^{1}$ The therapeutic applications of benzodiazepines include anxiolytics, ${ }^{2}$ antiarrhythmics, ${ }^{3}$ vasopressin antagonists, ${ }^{4}$ HIV reverse transcriptase inhibitors, ${ }^{5}$ and cholecystokinin antagonists. ${ }^{6}$ Molecules with the 1,5 -benzodiazepin-2-one scaffold are privileged substructures exhibiting a range of biological activities. Some of them have been clinically used as anxiolytic agents, such as arfendazam 1, ${ }^{7}$ lofendazam 2, ${ }^{8}$ triflubazam 3, ${ }^{9}$ and clobazam 4, ${ }^{10}$ or as antisecretory agents, such as telenzepine $5 .{ }^{11}$ Furthermore, they exhibit activities including interleukin- 1β converting enzyme inhibition, such as for $\mathbf{6}$, delayed rectifier potassium current blocking, such as for $7,{ }^{12}$ and antiarrhythmic activity, such as for $\mathbf{8}^{13}$ (Figure 1). Significantly less research has been undertaken on the 1,5 -benzodiazepin-2-ones, compared to the 1,4-benzodiazepin-2-ones. Therefore, development of a synthetic method that could be used to prepare a variety of these templates remains an important task.
Recently, our group reported the synthesis of 2-hydroxyquinoxaline, ${ }^{14}$ benzimidazole, ${ }^{15}$ imidazoquinoxalinol, ${ }^{16}$ indolin-2one, ${ }^{17}$ benzo $[1,4]$ oxazin-3- one, ${ }^{18}$ benzo $[1,4]$ thiazin- 3 -one, ${ }^{19}$ and 1,5 -benzothiazepin-4-one ${ }^{20}$ libraries using 1,5-difluoro-2,4dinitrobenzene (DFDNB) as starting material. Herein, we wish to report a novel and efficient solution-phase route to synthesis of substituted 1,5 -benzodiazepin-2-ones. This route permits us to introduce great molecular diversity under mild reaction conditions, including substitution diversity and scaffold diversity. A large number of derivatives can be rapidly synthesized in excellent purity and high yield using this method.

Results and Discussion

The synthetic route to $5,7,8$-substituted 1,5 -benzodiazepin2 -ones is depicted in Scheme 1. The quantitative substitution of the first fluorine atoms of DFDNB by ethanethiol, phenols, or secondary amines produced compound 2 . Displacement of another fluorine atom with β-amino esters $\mathbf{3}$ gave $\mathbf{4}$. Sulfone is

[^0]an interesting pharmacophore displayed on many drugs. Therefore, we attempted to oxidize $\mathbf{4}$ to its corresponding sulfone, $\mathbf{5}$, where R^{1} is the sulfide group. UHP ${ }^{19}$ (an adduct of hydrogen peroxide and urea) has been optimized in our group to prepare aromatic sulfones from the sulfide treatment of compound 4 with UHP, and readily provided 5 . The convenient reductive method of HCOONH_{4} with Pd / C was then chosen for quantitative reduction of $m-\operatorname{Ar}\left(\mathrm{NO}_{2}\right)_{2}$ of $\mathbf{4}$ or $\mathbf{5}$ into $m-\operatorname{Ar}\left(\mathrm{NH}_{2}\right)_{2}$ at room temperature that offered compound $\mathbf{6}$ in high purity. Additional alkali hydrolysis (LiOH) of $\mathbf{6}$ was necessary to give the desired acid 7. Cyclization of 7 with 1-ethyl-3-(3-dimethylaminopro-pyl)-carbodiimide (EDC) smoothly afforded the benzodiazepine derivative $\mathbf{8}$. Compound $\mathbf{8}$ was further treated using aldehydes, anhydride, isocyanates, isothiocyanate, and sulfonyl chlorides to generate the corresponding secondary amines, amides, ureas, thioureas, and sulfonamides, respectively. Typical compounds were characterized by LC-MS, HRMS (Table 1), ${ }^{1} \mathrm{H}$, or ${ }^{13}$ CNMR.
Because not many substituted β-amino esters were commercially available, we decided to employ a simple route to prepare a variety of β-amino esters. ${ }^{21}$ The requisite β-amino esters $\mathbf{3}$ were prepared as shown in Scheme 1. Various primary amines were selectively condensed with 1 equiv methyl acrylate to give $\mathbf{3}$. The product reacted with $\mathbf{2}$ directly without further purification.
To obtain the 1,5 -benzodiazepin- 2 -one core with more points of diversity, we selected some substituted β-amino acids 9 as nucleophilic reagents (Scheme 2). The resulting intermediate 2a was used to undergo $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$-type reactions, in which the fluorine can be substituted by the β-amino group of 9 . Compound $\mathbf{1 0}$ was oxidized by UHP to obtain the corresponding sulfone 11. Compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ were reduced using stannous chloride in the presence of hydrochloric acid (38\%), and spontaneously cyclized to afford the desired benzodiaz-epine-2-one scaffolds $\mathbf{1 2}$ and 13. There are two amino groups (5- and 8 -amino) in structures $\mathbf{1 2}$ and 13, and we had to derive them respectively. It was soon realized, however, that the 8 -amino group is more prone to reaction than the 5 -amino of 12. Therefore, $\mathbf{1 2}$ was treated with isocyanates to generate the corresponding ureas $\mathbf{1 4}$. However, the 8 -amino group of $\mathbf{1 3}$ is less prone to reaction because of the electron-withdrawing effect

1

2

3

4

5

6

7

8

Figure 1. Examples of some biologically active 1,5-benzodiazepin-2-ones.

Scheme 1. Synthetic Route to $5,7,8$-Substituted 1,5-Benzodiazepin-2-ones

of the ortho-sulfone group. Therefore, when compounds $\mathbf{1 3}$ were treated with isocyanates, the corresponding ureas 15 were generated. The remaining steps completing the synthetic sequence involved further functionalization of the free amino group of the 1,5 -benzodiazepin-2-one template. We initially attempted the derivation of the 5-amino group of 14 and 8 -amino group of $\mathbf{1 5}$ with anhydrides or isocyanates, but we observed that the amino group is too inert to react with isocyanates. Finally, $\mathbf{1 4}$ was treated with substituent benzyl chloride or anhydride to obtain 16. Compound 15 was treated with substituent benzyl chloride or anhydride and we obtained 17 and 18. Typical compounds were characterized by LC-MS, HRMS (Table 2), ${ }^{1} \mathrm{H}$, or ${ }^{13} \mathrm{CNMR}$.

Conclusions

In conclusion, we have created a versatile, high-yielding, solution-phase route to substituted 1,5-benzodiazepin-2-ones
from DFDNB. All the reactions involved herein are highly effective under mild conditions. The biological screening results from this library for the identification of active compounds will be reported soon.

Experimental Section

All chemical reagents were purchased from Acros Organics (Geel, Belgium) and used without further purification. Tetrahydrofuran (THF) was dried over molecular sieves and redistilled from sodium before use. Acetone was treated with anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$. HPLC analysis or purification was performed on a Gilson HPLC system equipped with a Gilson UV-vis-152 detector, a Gilson 322 pump, and a Gilson 215 liquid handler. The employed column was a Kromasil C18 column ($4.6 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 50 \mathrm{~mm}$) from DIKMA for analysis. The eluent was a mixture of acetonitrile and water containing $0.05 \% \mathrm{HCOOH}$ with a linear gradient from 5:95 (v:v) acetonitrile- $\mathrm{H}_{2} \mathrm{O}$ to $95: 5$ (v:v) acetonitrile- $\mathrm{H}_{2} \mathrm{O}$ within five minutes at $1 \mathrm{~mL} / \mathrm{min}$. UV absorption detection was conducted at 254 nm . Automatic LC-MS analysis was performed on a ThermoFinnigan LCQ-Advantage mass spectrometer equipped with an Agilent pump, an Agilent detector, an Agilent liquid handler, and a fluent splitter. The elution gradient, flow rate, and detection wavelength were the same as indicated above. Five percent of the eluent was split into the MS system. Mass spectra were recorded in either the positive or the negative ion mode using electrospray ionization (ESI). High resolution LC-MS was carried out by Agilent LC/MSD TOF using a column of Agilent ZORBAX SB-C18 (Rapid resolution, $3.5 \mu \mathrm{~m}, 2.1 \mathrm{~mm} \times 30$ mm) at a flow rate of $0.40 \mathrm{~mL} / \mathrm{min}$. The solvent was MeOH : water $=75: 25(\mathrm{v}: \mathrm{v})$ containing $5 \mathrm{mmol} / \mathrm{L}$ ammonium formate. The ion source was also ESI. All NMR experiments were carried out on a Varian Mercury 300 or 400 MHz NMR spectrometer using CDCl_{3} or $\mathrm{DMSO}-d_{6}$ as the solvent. Parallel synthesis was carried out on an H + P Labortechnik parallel synthesizer.

General Procedure for the Synthesis of Intermediate 2. Method 1. To a magnetically stirred solution of 1.0 equiv. (typically 5.0 mmol) of 1,5-difluoro-2,4-dinitrobenzene and 1.0 equiv. of N -diisopropylethylamine (DIPEA) in 50 mL

Table 1. Molecular Weight and HPLC Purity for the Representative Substituted 1,5-Benzodiazepin-2-ones A

${ }^{a}$ Purity based on the integration area of the HPLC peaks (the detection wavelength was 254 nm).
of THF was added dropwise a solution of 1.0 equiv of ethanethiol or amine in 25 mL of THF. The reaction mixture was continuously stirred for an additional 1 h at room temperature. After the solvent was evaporated, water was added to precipitate $\mathbf{2}$. The desired intermediate $\mathbf{2 a}$ and $\mathbf{2 c}$ then were collected by filtration and washed thoroughly with water. Intermediate $\mathbf{2}$ was not purified and was used directly for the next reaction. For a typical compound, ethyl(5-fluoro-2,4-dinitrophenyl)sulfane, 1.21 g of yellow powder, was obtained in 98% yield, with an HPLC purity $>99 \%$. ESIMS: m/z $245.1(\mathrm{M}-\mathrm{H})^{-}$.
Method 2. To a magnetically stirred solution of 1.0 equiv (typically 5.0 mmol) of 1,5-difluoro-2,4-dinitrobenzene in 20 mL of acetone, 1.0 equiv of phenol and 2.0 equiv. of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ were added. The reaction mixture was shaken mechanically at room temperature for more than 5 h until the total disappearance of $\mathbf{1}$ as monitored by HPLC. Undissolved excess $\mathrm{K}_{2} \mathrm{CO}_{3}$ was removed by filtration. The solvent was evaporated. The residue $\mathbf{2 b}$ was used directly for the next reaction. Typical compound, 1-(3,5-dimeth-
ylphenoxy)-5- fluoro-2,4-dinitrobenzene, 1.49 g of yellow powder, was obtained in 98% yield, with an HPLC purity $>99 \%$. ESI-MS: m/z 305.1 (M-H) ${ }^{-}$.

General Procedure for the Synthesis of Intermediate

 4. A three-necked, 250 mL round-bottomed flask provided with a pressure-equalizing dropping funnel, thermometer, and CaCl drying tube was charged with $\mathrm{MeOH}(50 \mathrm{~mL})$ and primary amine (6.0 mmol). The mixture was stirred magnetically and then cooled to $0-5{ }^{\circ} \mathrm{C}$ (ice-bath), while methyl acrylate (6.6 mmol) in 40 mL MeOH was added dropwise over 1 h . The mixture was stirred at room temperature for 48 h and concentrated under vacuum. The residue 3 was dissolved in 50 mL THF and added to the intermediate 2 $(5.0 \mathrm{mmol})$. The reaction mixture was continuously stirred for 4 h at room temperature. The reaction mixture was evaporated in vacuo to dryness. Water (30 mL) was added to precipitate $\mathbf{4}$ as a yellow solid. Then compound $\mathbf{4}$ was collected after thoroughly washing with water. For a typical compound, methyl 3-((5-(3,5-dimethylphenoxy)-2,4-dinitrophenyl)(phenethyl)amino)propanoate 2.34 g of yellow pow-Scheme 2. Synthetic Route to 1,5-Benzodiazepin-2-ones with More Substituted Groups

Table 2. Molecular Weight and HPLC Purity for the Representative Substituted 1,5-Benzodiazepin-2-ones

${ }^{a}$ Purity based on the integration area of the HPLC peaks (the detection wavelength was 254 nm).
der was obtained in 95% yield, with an HPLC purity $>99 \%$. ESI-MS: m/z $494.2(\mathrm{M}+\mathrm{H})^{+}$.
Methyl 3-((5-(3,5-dimethylphenoxy)-2,4-dinitrophenyl)(phenethyl)amino) propanoate. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}): $\delta 2.269(\mathrm{~s}, 6 \mathrm{H}), 2.552(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.691$ $(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.293(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.393(\mathrm{t}, 2 \mathrm{H}$,
$J=6.9 \mathrm{~Hz}), 3.522(\mathrm{~s}, 3 \mathrm{H}), 6.432(\mathrm{~s}, 1 \mathrm{H}), 6.815(\mathrm{~s}, 2 \mathrm{H})$, 6.947-6.991 (m, 3H), $7.186(\mathrm{~s}, 1 \mathrm{H}), 7.192-7.215(\mathrm{~m}, 2 \mathrm{H})$, $8.590(\mathrm{~s}, 1 \mathrm{H})$.

typical compound of 4
General Procedure for the Synthesis of Intermediate 5. To a solution of $4(3 \mathrm{mmol})$ in acetonitrile $(15 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$, UHP (18 mmol) and trifluoroacetic anhydride (10 mmol) in 30 mL acetonitrile were slowly added with stirring. The oxidative progress was then monitored by a fast LC-MS analysis. After the completion of oxidation, the mixture was diluted with water (30 mL), and extracted with DCM ($3 \times$ $30 \mathrm{~mL})$. The DCM layers were combined and washed with a saturated NaCl solution ($1 \times 30 \mathrm{~mL}$), and dried over anhydrous MgSO_{4}. The solid was then filtered and the filtrate was concentrated in vacuo to obtain solid of $\mathbf{5}$. The solid was used directly for the next reaction without further purification. For a typical compound, methyl 3-((5-(ethyl-sulfonyl)-2,4-dinitrophenyl)(phenethyl)amino)propanoate 1.36 g of yellow powder was obtained in 98% yield, with an HPLC purity $>99 \%$. ESI-MS: m/z $466.1(\mathrm{M}+\mathrm{H})^{+}$.

General Procedure for the Synthesis of Intermediate

8. To a stirred solution of 3.0 mmol of $\mathbf{4}$ or $\mathbf{5}$ in 50 mL of ethanol was added $\mathrm{HCOONH}_{4}(30 \mathrm{mmol})$ and 0.2 g of 10% Pd / C. The reaction mixture turned from yellow to red and finally became colorless within 30 min at room temperature. The catalyst and excess HCOONH_{4} were removed by filtration. The filtrate was concentrated in vacuo to yield $\mathbf{6}$.
2.0 mmol 6 was dissolved in 20 mL of THF; 1.05 g of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in 20 mL water was added with stirring. The reaction mixture was continuously stirred for 1 h at room temperature. The pH was adjusted to 7.0 with 2 N HCl . The resulting solution was analyzed by LC-MS at 254 nm and showed a single peak with the anticipated molecular weight, for example 3-((2,4-diamino-5-(ethylsulfonyl)phenyl) (phenethyl)amino)propanoic acid with $\mathrm{m} / \mathrm{z} 392.2(\mathrm{M}+\mathrm{H})^{+}$. This solution was directly added to $\mathrm{EDC} \cdot \mathrm{HCl}(6 \mathrm{mmol})$ and allowed to react for an additional 3 h until completion as monitored by a fast LC-MS system. The mixture was concentrated in vacuo to remove THF and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by silica gel column chromatography eluting with ethyl acetate/petroleum ether. For a typical compound, 8-amino-7-(ethylsulfonyl)-5-phenethyl-4,5-dihydro- 1 H -benzo[b][1,4]diazepin-2(3H)-one 520 mg of pale powder was obtained in 70% yield, with an HPLC purity $>99 \%$. ESIMS: m/z $374.1(\mathrm{M}+\mathrm{H})^{+}$.

8-Amino-7-(3,5-dimethyl-phenoxy)-5-phenethyl-1,3,4,5-tetrahydro-benzo $[b][1,4]$ diazepin-2-one. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 2.173$ (s, 6H), 2.237 (t, 2H, $J=6.6$ $\mathrm{Hz}), 2.605(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.017(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, 3.297 (t, 2H, $J=6.6 \mathrm{~Hz}$), 4.762 (brs, 2H), 6.449 (s, 1H), $6.537(\mathrm{~s}, 2 \mathrm{H}), 6.561(\mathrm{~s}, 1 \mathrm{H}), 6.674(\mathrm{~s}, 1 \mathrm{H}), 7.001-7.022(\mathrm{~m}$, 2H), 7.131-7.208 (m, 3H), 9.279 ($\mathrm{s}, 1 \mathrm{H}$).

compound A1
8-Amino-7-ethanesulfonyl-5-pentyl-1,3,4,5-tetrahydrobenzo $[b][1,4]$ diazepin-2-one. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 0.840(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.256-1.305(\mathrm{~m}, 7 \mathrm{H})$, $1.496-1.505(\mathrm{~m}, 2 \mathrm{H}), 2.515(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.062(\mathrm{t}$, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.190(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.447(\mathrm{t}, 2 \mathrm{H}, J$ $=6.6 \mathrm{~Hz}), 4.995(\mathrm{brs}, 2 \mathrm{H}), 6.446(\mathrm{~s}, 1 \mathrm{H}), 7.418(\mathrm{~s}, 1 \mathrm{H})$, $8.120(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 7.093$, 13.868, 21.832, 26.516, 28.637, 33.885, 47.663, 52.179, $55.535,109.226,113.650,121.157,131.013,141.556,143.378$, 172.895 .

compound A7

8-Amino-7-ethanesulfonyl-5-phenethyl-1,3,4,5-tetrahy-dro-benzo[b][1,4]diazepin-2-one. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 1.098(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.299(\mathrm{t}, 2 \mathrm{H}, J=$ $6.9 \mathrm{~Hz}), 2.683(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.148(\mathrm{t}, 2 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 3.177(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.356(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz})$, 5.916 (brs, 2H), 6.479 (s, 1H), 7.165-7.258 (m, 6H), 9.703 (s, 1H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 7.139,33.336$,
33.901, 47.724, 54.345, 55.596, 109.348, 113.773, 121.203, $126.039,128.267,128.603,130.754,139.679,141.556$, 143.555, 172.834.

compound A9

8-Amino-5-isopropyl-7-piperidin-1-yl-1,3,4,5-tetrahydrobenzo $[b][1,4]$ diazepin-2-one. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right): \delta 1.095(\mathrm{~d}, 6 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.450-1.505(\mathrm{~m}, 2 \mathrm{H})$, $1.509-1.543(\mathrm{~m}, 4 \mathrm{H}), 2.184(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.612-2.788$ $(\mathrm{m}, 4 \mathrm{H}), 3.286-3.311(\mathrm{~m}, 1 \mathrm{H}), 3.391(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz})$, $4.535(\mathrm{brs}, 2 \mathrm{H}), 6.263(\mathrm{~s}, 1 \mathrm{H}), 6.648(\mathrm{~s}, 1 \mathrm{H}), 9.064(\mathrm{~s}, 1 \mathrm{H})$.

compound A30
8-Amino-7-ethanesulfonyl-5-propyl-1,3,4,5-tetrahydro-benzo[b][1,4]diazepin-2-one. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): \delta 0.795(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.090(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $1.386-1.440(\mathrm{~m}, 2 \mathrm{H}), 2.279(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.897(\mathrm{t}$, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.165(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.231(\mathrm{t}, 2 \mathrm{H}, J$ $=6.8 \mathrm{~Hz}), 5.787(\mathrm{brs}, 2 \mathrm{H}), 6.459(\mathrm{~s}, 1 \mathrm{H}), 7.086(\mathrm{~s}, 1 \mathrm{H})$, $9.668(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 7.048$, 11.320, 20.154, 33.916, 47.739, 54.071, 55.322, 109.241, $113.773,121.142,131.212,141.541,143.433,172.925$.

compound A31

Derivation of 8 at 8 -aromatic amino group. Method 1. Aldehydes $(0.1 \mathrm{mmol}), \mathrm{NaBH}(\mathrm{OAc})_{3}(0.2 \mathrm{mmol})$, and glacetic acid $(100 \mu \mathrm{~L})$ were added to a solution of $\mathbf{8}(0.1$ mmol) in 5 mL anhydrous DCM . The reaction mixture was stirred mechanically on an $\mathrm{H}+\mathrm{P}$ Labortechnik parallel synthesizer at $45{ }^{\circ} \mathrm{C}$ for at least 12 h . The chemical conversion was monitored by LC-MS analysis. After the reaction was complete, the solution was evaporated in vacuo to dryness. The crude residue was dissolved again with 15 mL DCM and then was washed with saturated NaHCO_{3} (2 $\times 10 \mathrm{~mL})$ and brine $(2 \times 10 \mathrm{~mL})$. After it had completely dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the filtrate was concentrated in vacuo to obtain the crude product. The final products were characterized after chromatographic purification on silica gel. The yields ranged from 70 to 90%.

7-Ethanesulfonyl-5-(2-ethyl-butyl)-8-(2-ethyl-butylamino)-1,3,4,5-tetrahydro-benzo $[b][1,4]$ diazepin-2-one. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.796(\mathrm{t}, 6 \mathrm{H}, J=7.5 \mathrm{~Hz}$), $0.924(\mathrm{t}$, $6 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.227(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.252-1.318$ (m, 4H), 1.340-1.427 (m, 4H), 1.452-1.589 (m, 2H), 2.482 $(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.884(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.984(\mathrm{t}, 2 \mathrm{H}$,
$J=4.5 \mathrm{~Hz}), 3.138(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.391(\mathrm{t}, 2 \mathrm{H}, J=$ 6.9 Hz), 5.943 (brs, 1H), 6.325 (s, 1H), $7.423(\mathrm{~s}, 1 \mathrm{H}), 7.800$ (s, 1H).

8-Butylamino-7-ethanesulfonyl-5-pentyl-1,3,4,5-tetrahy-dro-benzo[b][1,4]diazepin-2-one. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 0.848(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.947(\mathrm{t}, 3 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 1.240-1.289(\mathrm{~m}, 7 \mathrm{H}), 1.356-1.482(\mathrm{~m}, 4 \mathrm{H}), 1.605-1.703$ $(\mathrm{m}, 2 \mathrm{H}), 2.518(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.046-3.109(\mathrm{~m}, 4 \mathrm{H})$, $3.150(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 3.462(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 6.002$ (brs, 1H), $6.334(\mathrm{~s}, 1 \mathrm{H}), 7.513(\mathrm{~s}, 1 \mathrm{H}), 7.611(\mathrm{~s}, 1 \mathrm{H})$.

compound A8
8-Butylamino-7-ethanesulfonyl-5-phenethyl-1,3,4,5-tet-rahydro-benzo $[b][1,4]$ diazepin-2-one. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 0.976(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.278(\mathrm{t}, 3 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 1.414-1.488(\mathrm{~m}, 2 \mathrm{H}), 1.613-1.688(\mathrm{~m}, 2 \mathrm{H}), 2.531(\mathrm{t}$, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.798(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 3.095(\mathrm{t}, 2 \mathrm{H}, J$ $=6.9 \mathrm{~Hz}), 3.155(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.341(\mathrm{t}, 2 \mathrm{H}, J=7.5$ Hz), $3.532(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 6.348(\mathrm{~s}, 1 \mathrm{H}), 7.139-7.294$ $(\mathrm{m}, 5 \mathrm{H}), 7.582(\mathrm{~s}, 1 \mathrm{H}), 7.605(\mathrm{~s}, 1 \mathrm{H})$.

compound A10
7-Ethanesulfonyl-8-(2-ethyl-butylamino)-5-pentyl-1,3,4,5-tetrahydro-benzo[b][1,4]diazepin-2-one. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 0.785(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.843(\mathrm{t}, 6 \mathrm{H}$, $J=7.5 \mathrm{~Hz}), 1.074(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.161-1.215(\mathrm{~m}$, 4H), 1.296-1.410 (m, 6H), 1.511-1.553 (m, 1H), 2.302 (t, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.919-2.988(\mathrm{~m}, 4 \mathrm{H}), 3.175(\mathrm{q}, 2 \mathrm{H}, J=$ 7.2 Hz), 3.226 (t, 2H, $J=6.9 \mathrm{~Hz}$), 5.902 (brs, 1H), 6.416 $(\mathrm{s}, 1 \mathrm{H}), 7.168(\mathrm{~s}, 1 \mathrm{H}), 9.672(\mathrm{~s}, 1 \mathrm{H})$.

compound A11
7-Ethanesulfonyl-5-pentyl-8-(3-phenyl-propylamino)-1,3,4,5-tetrahydro-benzo $[b][1,4]$ diazepin-2-one. ${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.807(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$), $1.089(\mathrm{t}$, $3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.148-1.221(\mathrm{~m}, 4 \mathrm{H}), 1.346-1.412(\mathrm{~m}, 2 \mathrm{H})$,
$1.853-1.902(\mathrm{~m}, 2 \mathrm{H}), 2.302(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.656(\mathrm{t}$, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.945(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.066-3.085(\mathrm{~m}$, $2 \mathrm{H}), 3.191(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.265(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz})$, 5.926 (brs, 1H), 6.401 (s, 1H), 7.180-7.305 (m, 6H), 9.640 (s, 1H).

compound A12
7-Ethanesulfonyl-5-phenethyl-8-(3-phenyl-propylamino)-1,3,4,5-tetrahydro-benzo[b][1,4]diazepin-2-one. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 1.108(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $1.858-1.907(\mathrm{~m}, 2 \mathrm{H}), 2.328(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.633-2.716$ $(\mathrm{m}, 4 \mathrm{H}), 3.075-3.093(\mathrm{~m}, 2 \mathrm{H}), 3.182(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz})$, $3.231(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.364(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.940$ (brs, 1H), $6.424(\mathrm{~s}, 1 \mathrm{H}), 7.149-7.306(\mathrm{~m}, 11 \mathrm{H}), 9.667$ (s, $1 \mathrm{H})$.

compound A21
Method 2. To a solution of 0.10 mmol of $\mathbf{8}$ in 5 mL of anhydrous DCM, 0.12 mmol of different acylating reagents (anhydride, isocyanate, or isothiocyanate) were added. The reaction mixture was stirred mechanically on an $\mathrm{H}+\mathrm{P}$ Labortechnik parallel synthesizer at $45^{\circ} \mathrm{C}$ for at least 4 h . The solvent then was evaporated in vacuo to obtain the crude product. The final products were characterized after chromatographic purification on silica gel. The yields ranged from 70 to 90%.
N-[8-(3,5-Dimethyl-phenoxy)-4-oxo-1-phenethyl-2,3,4,5-tetrahydro- $1 H$-benzo $[b][1,4]$ diazepin- $7-y l]$-acetamide. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 1.992$ (s, 3H), 2.193 ($\mathrm{s}, 6 \mathrm{H}$), $2.294(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.588(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.048$ $(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.424(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 6.566(\mathrm{~s}$, $1 \mathrm{H}), 6.628(\mathrm{~s}, 2 \mathrm{H}), 6.768(\mathrm{~s}, 1 \mathrm{H}), 6.940-6.965(\mathrm{~m}, 2 \mathrm{H})$, $7.142-7.209(\mathrm{~m}, 3 \mathrm{H}), 7.566(\mathrm{~s}, 1 \mathrm{H}), 9.348(\mathrm{~s}, 1 \mathrm{H}), 9.430(\mathrm{~s}$, 1H).

compound A2
N-[8-(3,5-Dimethyl-phenoxy)-4-oxo-1-phenethyl-2,3,4,5-tetrahydro- $1 H$-benzo $[b][1,4]$ diazepin-7-yl]-2,2,2-trifluoro-
acetamide. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 2.191(\mathrm{~s}, 6 \mathrm{H})$, $2.357(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.637(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.130$ $(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.475(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 6.618(\mathrm{~s}$, 2H), $6.631(\mathrm{~s}, 1 \mathrm{H}), 6.779(\mathrm{~s}, 1 \mathrm{H}), 6.967-6.984(\mathrm{~m}, 2 \mathrm{H}), 7.008$ (s, 1H), 7.154-7.215 (m, 3H), $9.495(\mathrm{~s}, 1 \mathrm{H}), 10.852(\mathrm{~s}, 1 \mathrm{H})$.

compound A3
1-[8-(3,5-Dimethyl-phenoxy)-4-oxo-1-phenethyl-2,3,4,5-tetrahydro-1H-benzo $[b][1,4]$ diazepin-7-yl]-3-(4-fluoro-phenyl)-urea. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 2.210$ (s, $6 \mathrm{H}), 2.289(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.589(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $3.039(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.383(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 6.595$ $(\mathrm{s}, 1 \mathrm{H}), 6.672(\mathrm{~s}, 2 \mathrm{H}), 6.789(\mathrm{~s}, 1 \mathrm{H}), 6.946-6.966(\mathrm{~m}, 2 \mathrm{H})$, 7.079-7.7.201 (m, 5H), 7.401-7.435 (m, 2H), $7.908(\mathrm{~s}, 1 \mathrm{H})$, $8.264(\mathrm{~s}, 1 \mathrm{H}), 9.207(\mathrm{~s}, 1 \mathrm{H}), 9.439(\mathrm{~s}, 1 \mathrm{H})$.

compound A4
N-(8-Ethanesulfonyl-4-oxo-1-pentyl-2,3,4,5-tetrahydro$\mathbf{1 H}$-benzo[b][1,4]diazepin-7-yl)-acetamide. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 0.819(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.090(\mathrm{t}, 3 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 1.200-1.249(\mathrm{~m}, 4 \mathrm{H}), 1.432-1.476(\mathrm{~m}, 2 \mathrm{H})$, $2.066(\mathrm{~s}, 3 \mathrm{H}), 2.381(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.074(\mathrm{t}, 2 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 3.290(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.418(\mathrm{t}, 2 \mathrm{H}, J=6.9$ $\mathrm{Hz}), 7.354(\mathrm{~s}, 1 \mathrm{H}), 7.499(\mathrm{~s}, 1 \mathrm{H}), 9.382(\mathrm{~s}, 1 \mathrm{H}), 9.893(\mathrm{~s}$, 1 H).

compound A13

N -(8-Ethanesulfonyl-4-oxo-1-pentyl-2,3,4,5-tetrahydro$1 H$-benzo $b][1,4]$ diazepin-7-yl)-2,2,2-trifluoro-acetamide. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 0.830(\mathrm{t}, 3 \mathrm{H}, J=$ $6.9 \mathrm{~Hz}), 1.098(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.229-1.246(\mathrm{~m}, 4 \mathrm{H})$, $1.432-1.507(\mathrm{~m}, 2 \mathrm{H}), 2.448(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.143(\mathrm{t}$, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.318(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.477(\mathrm{t}, 2 \mathrm{H}, J$ $=6.9 \mathrm{~Hz}), 7.287(\mathrm{~s}, 1 \mathrm{H}), 7.407(\mathrm{~s}, 1 \mathrm{H}), 9.966(\mathrm{~s}, 1 \mathrm{H}), 10.954$ ($\mathrm{s}, 1 \mathrm{H}$).

1-(8-Ethanesulfonyl-4-oxo-1-pentyl-2,3,4,5-tetrahydro$1 H$-benzo [b][1,4]diazepin-7-yl)-3-(4-trifluoromethyl-phen-yl)-urea. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 0.823(\mathrm{t}, 3 \mathrm{H}, J$ $=6.9 \mathrm{~Hz}), 1.128(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.230-1.254(\mathrm{~m}, 4 \mathrm{H})$,

compound A14
$1.401-1.454(\mathrm{~m}, 2 \mathrm{H}), 2.376(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.062(\mathrm{t}$, $2 \mathrm{H}, J=6,9 \mathrm{~Hz}), 3.294(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.404(\mathrm{t}, 2 \mathrm{H}, J$ $=6.6 \mathrm{~Hz}), 7.347(\mathrm{~s}, 1 \mathrm{H}), 7.623-7.699(\mathrm{~m}, 5 \mathrm{H}), 8.516(\mathrm{~s}$, $1 \mathrm{H}), 9.891(\mathrm{~s}, 1 \mathrm{H}), 10.147(\mathrm{~s}, 1 \mathrm{H})$.

compound A15
1-(8-Ethanesulfonyl-4-oxo-1-pentyl-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepin-7-yl)-3-(4-methoxy-phenyl)urea. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) : $\delta 0.820(\mathrm{t}, 3 \mathrm{H}, J=$ $6.9 \mathrm{~Hz}), 1.124(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.230-1.254(\mathrm{~m}, 4 \mathrm{H})$, $1.401-1.450(\mathrm{~m}, 2 \mathrm{H}), 2.359(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.044(\mathrm{t}$, $2 \mathrm{H}, J=6,9 \mathrm{~Hz}), 3.270(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.326(\mathrm{t}, 2 \mathrm{H}, J$ $=6.6 \mathrm{~Hz}), 3.683(\mathrm{~s}, 3 \mathrm{H}), 6.870(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.340$ $(\mathrm{d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.387(\mathrm{~s}, 1 \mathrm{H}), 7.715(\mathrm{~s}, 1 \mathrm{H}), 8.343(\mathrm{~s}$, $1 \mathrm{H}), 9.562(\mathrm{~s}, 1 \mathrm{H}), 9.862(\mathrm{~s}, 1 \mathrm{H})$.

compound A16
1-(8-Ethanesulfonyl-4-oxo-1-pentyl-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepin-7-yl)-3-(4-methylsulfanyl-phen-yl)-urea. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 0.823(\mathrm{t}, 3 \mathrm{H}, J$ $=6.9 \mathrm{~Hz}), 1.126(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.229-1.252(\mathrm{~m}, 4 \mathrm{H})$, $1.399-1.491(\mathrm{~m}, 2 \mathrm{H}), 2.389(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.426(\mathrm{~s}$, $3 \mathrm{H}), 3.053(\mathrm{t}, 2 \mathrm{H}, J=6,9 \mathrm{~Hz}), 3.314(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz})$, $3.394(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 7.218(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.334$ $(\mathrm{s}, 1 \mathrm{H}), 7.440(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.694(\mathrm{~s}, 1 \mathrm{H}), 8.402(\mathrm{~s}$, $1 \mathrm{H}), 9.762(\mathrm{~s}, 1 \mathrm{H}), 9.869(\mathrm{~s}, 1 \mathrm{H})$.

1-(8-Ethanesulfonyl-4-oxo-1-pentyl-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepin-7-yl)-3-(4-fluoro-phenyl)urea. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 0.823(\mathrm{t}, 3 \mathrm{H}, J=$ $6.9 \mathrm{~Hz}), 1.126(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.204-1.253(\mathrm{~m}, 4 \mathrm{H})$, $1.428-1.471(\mathrm{~m}, 2 \mathrm{H}), 2.367(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.054(\mathrm{t}$, $2 \mathrm{H}, J=6,9 \mathrm{~Hz}), 3.297(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.394(\mathrm{t}, 2 \mathrm{H}, J$
$=6.6 \mathrm{~Hz}), 7.094-7.153(\mathrm{~m}, 2 \mathrm{H}), 7.334(\mathrm{~s}, 1 \mathrm{H}), 7.455-7.502$ (m, 2H), $7.690(\mathrm{~s}, 1 \mathrm{H}), 8.398(\mathrm{~s}, 1 \mathrm{H}), 9.779(\mathrm{~s}, 1 \mathrm{H}), 9.873$ (s, 1H).

compound A18

1-(8-Ethanesulfonyl-4-oxo-1-pentyl-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepin-7-yl)-3-(3-fluoro-phenyl)-thiourea. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 0.837(\mathrm{t}, 3 \mathrm{H}, J=$ $6.9 \mathrm{~Hz}), 1.094(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.200-1.310(\mathrm{~m}, 4 \mathrm{H})$, $1.455-1.505(\mathrm{~m}, 2 \mathrm{H}), 2.426(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.097(\mathrm{t}$, $2 \mathrm{H}, J=6,9 \mathrm{~Hz}), 3.246(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.454(\mathrm{t}, 2 \mathrm{H}, J$ $=6.6 \mathrm{~Hz}), 6.872-7.035(\mathrm{~m}, 1 \mathrm{H}), 7.183(\mathrm{~s}, 1 \mathrm{H}), 7.262-7.289$ $(\mathrm{m}, 1 \mathrm{H}), 7.368(\mathrm{~s}, 1 \mathrm{H}), 7.370-7.396(\mathrm{~m}, 1 \mathrm{H}), 7.668-7.704$ (m, 1H), $9.248(\mathrm{~s}, 1 \mathrm{H}), 9.906(\mathrm{~s}, 1 \mathrm{H}), 10.434(\mathrm{~s}, 1 \mathrm{H})$.

compound A19

N-(8-Ethanesulfonyl-4-oxo-1-phenethyl-2,3,4,5-tetrahy-dro-1 H-benzo $[b][1,4]$ diazepin-7-yl)-acetamide. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 1.103(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 2.069 $(\mathrm{s}, 3 \mathrm{H}), 2.401(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.757(\mathrm{t}, 2 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 3.266(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.290(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $3.511(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 7.187-7.297(\mathrm{~m}, 5 \mathrm{H}), 7.436(\mathrm{~s}$, $1 \mathrm{H}), 7.500(\mathrm{~s}, 1 \mathrm{H}), 9.395(\mathrm{~s}, 1 \mathrm{H}), 9.921(\mathrm{~s}, 1 \mathrm{H})$.

compound A22
N-(8-Ethanesulfonyl-4-oxo-1-phenethyl-2,3,4,5-tetrahy-dro-1H-benzo[b][1,4]diazepin-7-yl)-2,2,2-trifluoro-acetamide. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 1.110(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 2.462(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.797(\mathrm{t}, 2 \mathrm{H}, J=6.9$ $\mathrm{Hz}), 3.324(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.399(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz})$, 3.559 (t, 2H, $J=6.6 \mathrm{~Hz}$), 7.191-7.296 (m, 6H), 7.480(s, 1H), 9.977 ($\mathrm{s}, 1 \mathrm{H}$), 10.966 ($\mathrm{s}, 1 \mathrm{H})$.

compound A23

1-(8-(ethylsulfonyl)-4-oxo-1-phenethyl-2,3,4,5-tetrahy-dro-1H-benzo[b][1,4]diazepin-7-yl)-3-(4-(trifluoromethyl)phenyl)urea. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 1.145$ $(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.400(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.758(\mathrm{t}, 2 \mathrm{H}$, $J=7.6 \mathrm{~Hz}), 3.280(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.334(\mathrm{t}, 2 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 3.502(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 7.187-7.277(\mathrm{~m}, 5 \mathrm{H})$, 7.431 (s, 1H), 7.624-7.672 (m, 4H), 7.694(s, 1H), 8.521 (s, $1 \mathrm{H}), 9.910(\mathrm{~s}, 1 \mathrm{H}), 10.152(\mathrm{~s}, 1 \mathrm{H})$.

compound A24
1-(8-(ethylsulfonyl)-4-oxo-1-phenethyl-2,3,4,5-tetrahy-dro-1H-benzo[b][1,4]diazepin-7-yl)-3-(4-methoxyphenyl)urea. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 1.143(\mathrm{t}, 3 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}), 2.386(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.751(\mathrm{t}, 2 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 3.288(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.314(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $3.486(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.706(\mathrm{~s}, 3 \mathrm{H}), 6.869(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}), 7.186-7.363(\mathrm{~m}, 5 \mathrm{H}), 7.385(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $7.412(\mathrm{~s}, 1 \mathrm{H}), 7.731(\mathrm{~s}, 1 \mathrm{H}), 8.348(\mathrm{~s}, 1 \mathrm{H}), 9.562(\mathrm{~s}, 1 \mathrm{H})$, $9.876(\mathrm{~s}, 1 \mathrm{H})$.

compound A25
1-(8-(Ethylsulfonyl)-4-oxo-1-phenethyl-2,3,4,5-tetrahy-dro-1H-benzo[b][1,4]diazepin-7-yl)-3-(4-(methylthio)phenyl)urea. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 1.143$ (t, 3H, $J=7.6 \mathrm{~Hz}), 2.392(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.427(\mathrm{~s}, 3 \mathrm{H}), 2.755(\mathrm{t}$, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.297(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.314(\mathrm{t}, 2 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}), 3.492(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 7.187-7.291(\mathrm{~m}, 7 \mathrm{H})$, $7.425(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.452(\mathrm{~s}, 1 \mathrm{H}), 7.709(\mathrm{~s}, 1 \mathrm{H})$, $8.407(\mathrm{~s}, 1 \mathrm{H}), 9.761(\mathrm{~s}, 1 \mathrm{H}), 9.883(\mathrm{~s}, 1 \mathrm{H})$.

compound A26

1-(8-Ethanesulfonyl-4-oxo-1-phenethyl-2,3,4,5-tetrahy-dro-1H-benzo[b][1,4]diazepin-7-yl)-3-(4-fluoro-phenyl)urea. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) : $\delta 1.141(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 2.390(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.752(\mathrm{t}, 2 \mathrm{H}, J=6.9$ $\mathrm{Hz}), 3.297(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.492(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $3.685(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 7.097-7.127(\mathrm{~m}, 2 \mathrm{H}), 7.157-7.300$ $(\mathrm{m}, 5 \mathrm{H}), 7.418(\mathrm{~s}, 1 \mathrm{H}), 7.458-7.504(\mathrm{~m}, 2 \mathrm{H}), 7.703(\mathrm{~s}, 1 \mathrm{H})$, $8.408(\mathrm{~s}, 1 \mathrm{H}), 9.797(\mathrm{~s}, 1 \mathrm{H}), 9.907(\mathrm{~s}, 1 \mathrm{H})$.

compound A27

1-(8-Ethanesulfonyl-4-oxo-1-phenethyl-2,3,4,5-tetrahy-dro-1H-benzo[b][1,4]diazepin-7-yl)-3-(3-fluoro-phenyl)thiourea. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 1.110(\mathrm{t}, 3 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 2.443(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.798(\mathrm{t}, 2 \mathrm{H}, J=6.6$ $\mathrm{Hz}), 3.284(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.388(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz})$, $3.545(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 6.985-7.011(\mathrm{~m}, 1 \mathrm{H}), 7.172-7.311$ $(\mathrm{m}, 6 \mathrm{H}), 7.348-7.424(\mathrm{~m}, 1 \mathrm{H}), 7.445(\mathrm{~s}, 1 \mathrm{H}), 7.664-7.717$ $(\mathrm{m}, 1 \mathrm{H}), 7.941(\mathrm{~s}, 1 \mathrm{H}), 9.272(\mathrm{~s}, 1 \mathrm{H}), 9.934(\mathrm{~s}, 1 \mathrm{H}), 10.444$ (s, 1H).

compound A28
N-(8-Ethanesulfonyl-4-oxo-1-propyl-2,3,4,5-tetrahydro$1 H$-benzo [b][1,4]diazepin-7-yl)-acetamide. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 0.824(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.100(\mathrm{t}, 3 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 1.453-1.507(\mathrm{~m}, 2 \mathrm{H}), 2.067(\mathrm{~s}, 3 \mathrm{H}), 2.388(\mathrm{t}$, $2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.047(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.294(\mathrm{q}, 2 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}), 3.414(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 7.354(\mathrm{~s}, 1 \mathrm{H}), 7.507$ $(\mathrm{s}, 1 \mathrm{H}), 9.382(\mathrm{~s}, 1 \mathrm{H}), 9.890(\mathrm{~s}, 1 \mathrm{H})$.

compound A32

N-(8-Ethanesulfonyl-4-oxo-1-propyl-2,3,4,5-tetrahydro$1 H$-benzo[b][1,4]diazepin-7-yl)-2,2,2-trifluoro-acetamide. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 0.841(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 1.107$ (t, 3H, $J=7$. Two Hz), 1.488-1.542 (m, $2 \mathrm{H}), 2.455(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.116(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $3.332(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.473(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 7.297$ (s, 1H), $7.407(\mathrm{~s}, 1 \mathrm{H}), 9.964(\mathrm{~s}, 1 \mathrm{H}), 10.951(\mathrm{~s}, 1 \mathrm{H})$.

compound A33

1-(8-Ethanesulfonyl-4-oxo-1-propyl-2,3,4,5-tetrahydro$1 H$-benzo [b][1,4]diazepin-7-yl)-3-(4-trifluoromethyl-phen-yl)-urea. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 0.830(\mathrm{t}, 3 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}), 1.138(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.455-1.509(\mathrm{~m}, 2 \mathrm{H})$, $2.384(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.038(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.300$ $(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.403(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 7.347(\mathrm{~s}$,
$1 \mathrm{H}), 7.628-7.694(\mathrm{~m}, 5 \mathrm{H}), 8.517(\mathrm{~s}, 1 \mathrm{H}), 9.886(\mathrm{~s}, 1 \mathrm{H})$, 10.139 (s, 1H).

compound A34
1-(8-Ethanesulfonyl-4-oxo-1-propyl-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepin-7-yl)-3-(4-methoxy-phenyl)urea. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 0.825(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 1.134(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.446-1.500(\mathrm{~m}, 2 \mathrm{H})$, $2.369(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.020(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.284$ $(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.385(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.705(\mathrm{~s}$, $3 \mathrm{H}), 6.867(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.327(\mathrm{~s}, 1 \mathrm{H}), 7.372(\mathrm{~d}, 2 \mathrm{H}$, $J=8.8 \mathrm{~Hz}), 7.717(\mathrm{~s}, 1 \mathrm{H}), 8.344(\mathrm{~s}, 1 \mathrm{H}), 9.553(\mathrm{~s}, 1 \mathrm{H})$, 9.857 (s, 1H).

compound A35
1-(8-Ethanesulfonyl-4-oxo-1-propyl-2,3,4,5-tetrahydro$1 H$-benzo [b][1,4]diazepin-7-yl)-3-(4-methylsulfanyl-phen-yl)-urea. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 0.827(\mathrm{t}, 3 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}), 1.135(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.449-1.503(\mathrm{~m}, 2 \mathrm{H})$, $2.375(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.427(\mathrm{~s}, 3 \mathrm{H}), 3.027(\mathrm{t}, 2 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 3.291(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.391(\mathrm{t}, 2 \mathrm{H}, J=6.8$ $\mathrm{Hz}), 7.218(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.334(\mathrm{~s}, 1 \mathrm{H}), 7.439(\mathrm{~d}, 2 \mathrm{H}$, $J=8.8 \mathrm{~Hz}), 7.695(\mathrm{~s}, 1 \mathrm{H}), 8.403(\mathrm{~s}, 1 \mathrm{H}), 9.753(\mathrm{~s}, 1 \mathrm{H})$, $9.865(\mathrm{~s}, 1 \mathrm{H})$.

compound A36
1-(8-Ethanesulfonyl-4-oxo-1-propyl-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepin-7-yl)-3-(4-fluoro-phenyl)urea. ${ }^{1}$ H NMR (400 MHz, DMSO- d_{6}): $\delta 0.826(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 1.135(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.449-1.502(\mathrm{~m}, 2 \mathrm{H})$, $2.374(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.027(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.293$ $(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.391(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 7.122(\mathrm{t}, 2 \mathrm{H}$, $J=8.8 \mathrm{~Hz}), 7.334(\mathrm{~s}, 1 \mathrm{H}), 7.461-7.496(\mathrm{~m}, 2 \mathrm{H}), 7.692(\mathrm{~s}$, $1 \mathrm{H}), 8.400(\mathrm{~s}, 1 \mathrm{H}), 9.771(\mathrm{~s}, 1 \mathrm{H}), 9.869(\mathrm{~s}, 1 \mathrm{H})$.

compound A37

1-(8-Ethanesulfonyl-4-oxo-1-propyl-2,3,4,5-tetrahydro$1 H$-benzo[b][1,4]diazepin-7-yl)-3-(3-fluoro-phenyl)-thiourea. ${ }^{1}$ H NMR (400 MHz, DMSO- d_{6}): $\delta 0.853(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 1.104(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.496-1.550(\mathrm{~m}, 2 \mathrm{H})$, $2.433(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.091(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.282$ $(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.449(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 6.987(\mathrm{t}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 7.193(\mathrm{~s}, 1 \mathrm{H}), 7.278(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.367$ $(\mathrm{s}, 1 \mathrm{H}), 7.392-7.412(\mathrm{~m}, 1 \mathrm{H}), 7.685(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz})$, $9.245(\mathrm{~s}, 1 \mathrm{H}), 9.905(\mathrm{~s}, 1 \mathrm{H}), 10.432(\mathrm{~s}, 1 \mathrm{H})$.

compound A38
Method 3. To a solution of 0.10 mmol of $\mathbf{8}$ in 5 mL of dry DCM, 0.3 mmol of pyridine and 0.12 mmol of sulfonyl chloride were added. After the reaction mixture was stirred at $45^{\circ} \mathrm{C}$ for more than 5 h , the solvent was evaporated in vacuo. The final products were characterized after chromatography purification on silica gel. The yields ranged from 70 to 90%.
N-[8-(3,5-Dimethyl-phenoxy)-4-oxo-1-phenethyl-2,3,4,5-tetrahydro- $1 H$-benzo $[b][1,4]$ diazepin- 7 -yl $]$-benzenesulfonamide. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 2.131$ (s, 6H), $2.284(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.519(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.979$ $(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.389(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 6.196(\mathrm{~s}$, 2H), $6.329(\mathrm{~s}, 1 \mathrm{H}), 6.723(\mathrm{~s}, 1 \mathrm{H}), 6.866-6.885(\mathrm{~m}, 2 \mathrm{H}), 7.012$ $(\mathrm{s}, 1 \mathrm{H}), 7.128-7.181(\mathrm{~m}, 3 \mathrm{H}), 7.457(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $7.571(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.711(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 9.456$ $(\mathrm{s}, 1 \mathrm{H}), 9.728(\mathrm{~s}, 1 \mathrm{H})$.

compound A5
N-(8-Ethanesulfonyl-4-oxo-1-pentyl-2,3,4,5-tetrahydro$1 H$-benzo[b][1,4]diazepin-7-yl)-benzenesulfonamide. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 0.797$ (t, $3 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $0.980(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.163-1.206(\mathrm{~m}, 4 \mathrm{H}), 1.389-1.433$ $(\mathrm{m}, 2 \mathrm{H}), 2.358(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.037(\mathrm{t}, 2 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 3.166(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.395(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz})$, $6.995(\mathrm{~s}, 1 \mathrm{H}), 7.288(\mathrm{~s}, 1 \mathrm{H}), 7.580-7.693(\mathrm{~m}, 3 \mathrm{H})$, 7.901-7.929 (m, 2H), $9.442(\mathrm{~s}, 1 \mathrm{H}), 9.973(\mathrm{~s}, 1 \mathrm{H})$.

compound A20
N-(8-Ethanesulfonyl-4-oxo-1-phenethyl-2,3,4,5-tetrahy-dro-1H-benzo $[b][1,4]$ diazepin-7-yl)-benzenesulfonamide. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 0.996(\mathrm{t}, 3 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}), 2.398(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.716(\mathrm{t}, 2 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 3.205(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 3.216(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz})$, $3.485(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 7.001(\mathrm{~s}, 1 \mathrm{H}), 7.151-7.278(\mathrm{~m}$, $5 \mathrm{H}), 7.368(\mathrm{~s}, 1 \mathrm{H}), 7.585-7.696(\mathrm{~m}, 3 \mathrm{H}), 7.907-7.936(\mathrm{~m}$, 2H), $9.466(\mathrm{~s}, 1 \mathrm{H}), 9.998(\mathrm{~s}, 1 \mathrm{H})$.

compound A29
N-(8-Ethanesulfonyl-4-oxo-1-propyl-2,3,4,5-tetrahydro$1 H$-benzo $[b][1,4]$ diazepin-7-yl)-benzenesulfonamide. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 0.795(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $0.993(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.417-1.471(\mathrm{~m}, 2 \mathrm{H}), 2.365(\mathrm{t}$, $2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.008(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.164(\mathrm{q}, 2 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}), 3.389(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 7.001(\mathrm{~s}, 1 \mathrm{H}), 7.287$ $(\mathrm{s}, 1 \mathrm{H}), 7.607(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.693(\mathrm{t}, 1 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 7.917(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 9.436(\mathrm{~s}, 1 \mathrm{H}), 9.973(\mathrm{~s}$, 1H).

General Procedure for the Synthesis of Intermediate 10. To a magnetically stirred solution of 1.0 equiv (5.0 mmol) intermediate 2a and 2.0 equiv of DIPEA in 50 mL THF was added 1.0 equiv of β-amine acid. The reaction mixture was continuously stirred for 4 h at room temperature. The reaction mixture was evaporated in vacuo to dryness. The residue $\mathbf{1 0}$ was used directly for the next reaction. For a typical compound, 2-(5-(ethylthio)-2,4-dinitrophenylamino)benzoic acid 1.724 g of yellow powder was obtained in 95% yield, with an HPLC purity $>99 \%$. ESI-MS: m/z 362.1 (M-H) ${ }^{-}$.

General Procedure for the Synthesis of Intermediate 11. To a solution of $\mathbf{1 0}(3 \mathrm{mmol})$ in acetonitrile $(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, UHP (18 mmol) and trifluoroacetic anhydride (10 mmol) in 30 mL acetonitrile were slowly added under stirring. The oxidative progress was then monitored by fast LC-MS analysis. After the completion of oxidation, the mixture was diluted with water (30 mL), and extracted with DCM ($3 \times 30 \mathrm{~mL}$). The DCM layers were combined and washed with a saturated NaCl solution $(1 \times 30 \mathrm{~mL})$ and dried over anhydrous MgSO_{4}. The solid then was filtered and the filtrate was concentrated in vacuo to obtain solid of 11. The solid was used directly for the next reaction without further purification. For a typical compound, 2-(5-(ethylsul-fonyl)-2,4-dinitrophenylamino)benzoic acid, 1.15 g of yellow
powder was obtained in 96% yield, with an HPLC purity $>99 \%$. ESI-MS: m/z $396.1(\mathrm{M}+\mathrm{H})^{+}$.
General Procedure for the Synthesis of 12 and 13. Compound $\mathbf{1 0}$ or $\mathbf{1 1}(3 \mathrm{mmol})$ in 30 mL of ethanol was completely reduced by adding it to a mixture of $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (18 mmol) and $12 \mathrm{M} \mathrm{HCl}(2 \mathrm{~mL})$ under reflux for 4 h . The chemical conversion was monitored by LC-MS analysis. After the reaction was completed, the pH value must be carefully adjusted to 10 . The resulting mixture was extracted with DCM $(3 \times 30 \mathrm{~mL})$. The organic phase was purified by silica gel column chromatography eluting with ethyl acetate/ petroleum ether. For a typical compound, 8-amino-7-(eth-ylsulfonyl)- $5 H$-dibenzo $[b, e][1,4]$ diazepin-11 $(10 H)$-one 740 mg of pale powder was obtained in 78% yield, with an HPLC purity $>96 \%$. ESI-MS: m/z $318.1(\mathrm{M}+\mathrm{H})^{+}$.

8-Amino-7-ethylsulfanyl-1,2,3,4,4a,5,10,11a-octahydrodibenzo $[b, e][1,4]$ diazepin-11-one. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}): $\delta 0.773(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $1.225-1.422(\mathrm{~m}$, 4H), 1.692-1.730 (m, 1H), 1.859-1.918 (m, 1H), 1.978-2.033 $(\mathrm{m}, 1 \mathrm{H}), 2.161-2.202(\mathrm{~m}, 1 \mathrm{H}), 2.572(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, 2.620-2.758 (m, 2H), 5.154 (brs, 1H), 5.552 (brs, 2H), 6.298 $(\mathrm{s}, 1 \mathrm{H}), 6.562(\mathrm{~s}, 1 \mathrm{H}), 8.475(\mathrm{~s}, 1 \mathrm{H})$.

compound 12a

8-Amino-7-(ethylthio)-5H-dibenzo $[b, e][1,4]$ diazepin$\mathbf{1 1 (1 0 H)}$-one. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 1.105(\mathrm{t}$, $3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.643(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.011$ (brs, 2H), $6.355(\mathrm{~s}, 1 \mathrm{H}), 6.807-6.861(\mathrm{~m}, 1 \mathrm{H}), 6.905(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.8 \mathrm{~Hz}), 6.960(\mathrm{~s}, 1 \mathrm{H}), 7.252-7.308(\mathrm{~m}, 1 \mathrm{H}), 7.414(\mathrm{~s}, 1 \mathrm{H})$, $7.605-7.636(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 9.797(\mathrm{~s}, 1 \mathrm{H})$.

compound 12b
8-Amino-7-(ethylsulfonyl)-4,5-dihydro-1H-benzo[b][1,4]diazepin-2(3H)-one. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 1.085(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.404(\mathrm{t}, 2 \mathrm{H}, J=$ $6.3 \mathrm{~Hz}), 3.126(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.352(\mathrm{t}, 2 \mathrm{H}, J=6.3$ Hz), 5.133 (brs, 1H), 5.501 (brs, 2H), 6.426 (s, 1H), 7.097 (s, 1H), 8.706 (s, 1H).

compound 13a
8-Amino-7-(ethylsulfonyl)-3-methyl-4,5-dihydro-1H-benzo[b][1,4]diazepin-2(3H)-one. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}): $\delta 0.943(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.085(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 2.573-2.613(\mathrm{~m}, 1 \mathrm{H}), 2.999-3.071(\mathrm{~m}, 1 \mathrm{H}), 3.127$ $(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.365-3.400(\mathrm{~m}, 1 \mathrm{H}), 5.050(\mathrm{brs}, 1 \mathrm{H})$, $5.521(\mathrm{brs}, 2 \mathrm{H}), 6.418(\mathrm{~s}, 1 \mathrm{H}), 7.104(\mathrm{~s}, 1 \mathrm{H}), 9.699(\mathrm{~s}, 1 \mathrm{H})$.

compound 13b

General Procedure for the Synthesis of 14 and 15. To a solution of 0.50 mmol of $\mathbf{1 2}$ or $\mathbf{1 3}$ in 10 mL of anhydrous DCM, 0.55 mmol of isocyanate was added. The reaction mixture was stirred mechanically on an $\mathrm{H}+\mathrm{P}$ Labortechnik parallel synthesizer at room temperature for at least 12 h . The chemical conversion was monitored by LC-MS analysis. The solvent then was evaporated in vacuo to obtain the crude product. The final products $\mathbf{1 4}$ and $\mathbf{1 5}$ were characterized after chromatography purification on silica gel. The yields ranged from 70 to 90%.

1-(7-(Ethylthio)-11-oxo-2,3,4,4a,5,10,11,11a-octahydro$1 H$-dibenzo[b,e][1,4]diazepin-8-yl)-3-(4-fluorophenyl)urea. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 1.138(\mathrm{t}, 3 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}), 1.187-1.224(\mathrm{~m}, 2 \mathrm{H}), 1.320-1.495(\mathrm{~m}, 2 \mathrm{H})$, $1.620-1.660(\mathrm{~m}, 1 \mathrm{H}), 1.709-1.748(\mathrm{~m}, 1 \mathrm{H}), 1.832-1.977(\mathrm{~m}$, $2 \mathrm{H}), 2.661$ (brs, 1 H$), 2.774(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.889$ (brs, $1 \mathrm{H}), 5.155(\mathrm{brs}, 1 \mathrm{H}), 7.074(\mathrm{~s}, 1 \mathrm{H}), 7.103-7.133(\mathrm{~m}, 2 \mathrm{H})$, $7.423-7.470(\mathrm{~m}, 2 \mathrm{H}), 7.563(\mathrm{~s}, 1 \mathrm{H}), 8.035(\mathrm{~s}, 1 \mathrm{H}), 9.402(\mathrm{~s}$, $1 \mathrm{H}), 9.472(\mathrm{~s}, 1 \mathrm{H})$.

compound 14a

1-(7-(Ethylthio)-11-oxo-10,11-dihydro-5H-dibenzo[b,e][1,4]diazepin-8-yl)-3-(4-fluorophenyl)urea. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 0.669(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}$), $2.270(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.369-6.418(\mathrm{~m}, 1 \mathrm{H}), 6.447-6.471$ $(\mathrm{m}, 1 \mathrm{H}), 6.592-6.622(\mathrm{~m}, 2 \mathrm{H}), 6.654(\mathrm{~s}, 1 \mathrm{H}), 6.807-6.836$ (m, 1H), 6.924-6.984 (m, 2H), 7.161-7.187 (m, 1H), 7.196 (s, 1H), $7.270(\mathrm{~s}, 1 \mathrm{H}), 7.601(\mathrm{~s}, 1 \mathrm{H}), 8.943(\mathrm{~s}, 1 \mathrm{H}), 9.435$ (s, 1H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 14.329,28.675$, $113.761,115.220,118.525,118.853,119.636,120.669$, 122.587, 124.277, 130.121, 132.139, 133.187, 134.900, 135.236, 136.117, 150.291, 152.381, 157.255, 167.768.

compound 14b
7-Amino-8-(ethylsulfonyl)- N-(4-fluorophenyl)-4-oxo-2,3,4,5-tetrahydro-1H-benzo $[b][1,4]$ diazepine-1-carboxamide. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 1.084(\mathrm{t}, 3 \mathrm{H}, J=$
$7.2 \mathrm{~Hz}), 2.437(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 3.126(\mathrm{q}, 2 \mathrm{H}, J=7.2$ Hz), 3.937 (t, 2H, $J=6.3 \mathrm{~Hz}$), 6.207 (brs, 2H), $6.580(\mathrm{~s}$, 1H), 7.007-7.046 (m, 2H), 7.283 (s, 1H), 7.360-7.395 (m, 2H), $8.180(\mathrm{~s}, 1 \mathrm{H}), 9.980(\mathrm{~s}, 1 \mathrm{H})$.

compound 15a
7-Amino-8-(ethylsulfonyl)- N -(4-fluorophenyl)-3-methyl-4-oxo-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepine-1-carboxamide. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 0.968$ (d, 3H, $J=6.6 \mathrm{~Hz}), 1.079(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.645-2.688(\mathrm{~m}$, $1 \mathrm{H}), 3.152(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.589-3.624(\mathrm{~m}, 1 \mathrm{H})$, $3.805-3.915(\mathrm{~m}, 1 \mathrm{H}), 6.213$ (brs, 2H), $6.573(\mathrm{~s}, 1 \mathrm{H})$, 6.997-7.057 (m, 2H), $7.285(\mathrm{~s}, 1 \mathrm{H}), 7.394-7.346(\mathrm{~m}, 2 \mathrm{H})$, $8.160(\mathrm{~s}, 1 \mathrm{H}), 9.986(\mathrm{~s}, 1 \mathrm{H})$.

compound 15b

General Procedure for the Synthesis of 16, 17, and 18. Method 1. To a solution of 0.10 mmol of $\mathbf{1 4}$ or $\mathbf{1 5}$ in 5 mL of anhydrous DCM, 0.12 mmol of anhydride was added. The reaction mixture was stirred mechanically on an $\mathrm{H}+\mathrm{P}$ Labortechnik parallel synthesizer at $45^{\circ} \mathrm{C}$ for at least 12 h . The solvent then was evaporated in vacuo to obtain the crude product. The final products were characterized after chromatography purification on silica gel. The yields ranged from 70 to 90%.

1-(7-(Ethylthio)-11-oxo-5-(2,2,2-trifluoroacetyl)-2,3,4,4a,5,10,11,11a-octahydro-1H-dibenzo $[b, e][1,4]$ diazepin-8-yl)-3-(4-fluorophenyl)urea. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right): \delta 1.011(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.034-1.163(\mathrm{~m}, 4 \mathrm{H}), 2.754$ $(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.286-3.394(\mathrm{~m}, 4 \mathrm{H}), 3.354-3.891(\mathrm{~m}$, $2 \mathrm{H}), 7.041-7.101(\mathrm{~m}, 2 \mathrm{H}), 7.359-7.406(\mathrm{~m}, 2 \mathrm{H}), 7.692(\mathrm{~s}$, $1 \mathrm{H}), 7.762(\mathrm{~s}, 1 \mathrm{H}), 8.638(\mathrm{~s}, 1 \mathrm{H}), 10.348(\mathrm{~s}, 1 \mathrm{H}), 11.064(\mathrm{~s}$, $1 \mathrm{H})$.

compound 16a
8-(Ethylsulfonyl)- N -(4-fluorophenyl)-3-methyl-4-oxo-7-(2,2,2-trifluoroacetamido)-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepine-1-carboxamide. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}): $\delta 1.033(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.059(\mathrm{t}, 3 \mathrm{H}, J=$
$7.5 \mathrm{~Hz}), 2.706-2.789(\mathrm{~m}, 1 \mathrm{H}), 3.394(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, 3.853-3.893 (m, 2H), 7.041-7.101 (m, 2H), 7.358-7.406 (m, $2 \mathrm{H}), 7.692(\mathrm{~s}, 1 \mathrm{H}), 7.759(\mathrm{~s}, 1 \mathrm{H}), 8.637(\mathrm{~s}, 1 \mathrm{H}), 10.347(\mathrm{~s}$, 1H), 11.065 ($\mathrm{s}, 1 \mathrm{H}$).

compound 17a

Method 2. To a solution of $\mathbf{1 4}$ or $\mathbf{1 5}(0.1 \mathrm{mmol})$ in 5 mL anhydrous acetone was added benzyl chloride (0.15 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.3 \mathrm{mmol})$, and $\mathrm{KI}(0.1 \mathrm{mmol})$. The reaction mixture was stirred mechanically on an $\mathrm{H}+\mathrm{P}$ Labortechnik parallel synthesizer at $45{ }^{\circ} \mathrm{C}$ for at least 12 h . The chemical conversion was monitored by LC-MS analysis. After the reaction was complete, the solution was evaporated in vacuo to dryness. The crude residue was redissolved with 15 mL DCM and then washed with water $(2 \times 10 \mathrm{~mL})$. The solvent then was evaporated in vacuo to obtain the crude product. The final products were characterized after chromatographic purification on silica gel. The yields ranged from 70 to 90%.

1-(5-(3-Chlorobenzyl)-7-(ethylthio)-11-oxo-2,3,4,4a,5,10,11,11a-octahydro-1H-dibenzo $[b, e][1,4]$ diazepin-8-yl)-3-(4-fluorophenyl)urea. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right): \delta 0.770(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.222-1.414(\mathrm{~m}, 4 \mathrm{H})$, 1.699-1.739 (m, 1H), 1.854-1.896 (m, 1H), 2.003-2.105 (m, $1 \mathrm{H}), 2.183-2.219(\mathrm{~m}, 1 \mathrm{H}), 2.586(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, 2.620-2.759 (m, 2H), $4.464(\mathrm{~s}, 2 \mathrm{H}), 7.068-7.253(\mathrm{~m}, 7 \mathrm{H})$, $7.403-7.450(\mathrm{~m}, 2 \mathrm{H}), 7.695(\mathrm{~s}, 1 \mathrm{H}), 8.052(\mathrm{~s}, 1 \mathrm{H}), 9.462(\mathrm{~s}$, $1 \mathrm{H}), 9.639(\mathrm{~s}, 1 \mathrm{H})$.

compound 16b
1-(7-(Ethylthio)-5-(4-fluorobenzyl)-11-oxo-2,3,4,4a,5,10,11,11a-octahydro-1H-dibenzo $[b, e][1,4]$ diazepin-8-yl)-3-(4-fluorophenyl)urea. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right): \delta 0.773(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.227-1.423(\mathrm{~m}, 4 \mathrm{H})$, 1.694-1.731 (m, 1H), 1.858-1.908 (m, 1H), 1.988-2.030 (m, $1 \mathrm{H}), 2.165-2.203(\mathrm{~m}, 1 \mathrm{H}), 2.582(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, 2.622-2.756 (m, 2H), 4.447 (s, 2H), 6.980-7.126 (m, 5H), 7.192-7.239 (m, 2H), 7.402-7.449 (m, 2H), 7.683 (s, 1H), $8.040(\mathrm{~s}, 1 \mathrm{H}), 9.454(\mathrm{~s}, 1 \mathrm{H}), 9.613(\mathrm{~s}, 1 \mathrm{H})$.

1-(5-(3-chlorobenzyl)-7-(ethylthio)-11-oxo-10,11-dihy-dro-5H-dibenzo[b,e][1,4]diazepin-8-yl)-3-(4-fluorophenyl)urea. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 1.146(\mathrm{t}, 3 \mathrm{H}, J$ $=7.5 \mathrm{~Hz}), 2.804(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 5.203(\mathrm{~s}, 2 \mathrm{H})$,

compound 16c
6.920-7.166 (m, 6H), 7.231-7.648 (m, 8H), $7.902(\mathrm{~s}, 1 \mathrm{H})$, $8.031(\mathrm{~s}, 1 \mathrm{H}), 9.349(\mathrm{~s}, 1 \mathrm{H})$.

compound 16d

7-Amino-5-(3-chlorobenzyl)-8-(ethylsulfonyl)- N -(4-fluo-rophenyl)-3-methyl-4-oxo-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepine-1-carboxamide. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 1.005(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.140(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 2.779-2.866(\mathrm{~m}, 1 \mathrm{H}), 3.194(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, 3.519-3.580 (m, 1H), 3.965-4.047 (m, 1H), 4.875 (d, 1H, J $=16.5 \mathrm{~Hz}), 4.977(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}), 6.269$ (brs, 2 H$)$, $6.853(\mathrm{~s}, 1 \mathrm{H}), 7.014-7.145(\mathrm{~m}, 2 \mathrm{H}), 7.145-7.212(\mathrm{~m}, 1 \mathrm{H})$, 7.226-7.275 (m, 3H), 7.275-7.383 (m, 2H), 7.376 (s, 1H), $8.069(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 6.956$, $12.964,35.857,47.766,50.603,55.440,110.595,114.563$, $116.000,121.870,122.412,124.926,126.272,126.772$, 130.102, 130.857, 133.161, 136.006, 140.309, 146.946, 147.766, 154.246, 157.590, 173.574.

compound 18
Acknowledgment. We are grateful to Dr. B. B. Kou, for his invaluable help. This work was supported by The National High Technology Research and Development Program of China (863 program) (no. 2006AA020501).

References and Notes

(1) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.; Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S.; Lotti, V. J.; Cerino, D. J.; Chen, T. B.; Kling, P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfield, J. J. Med. Chem. 1988, 31, 2235-2246.
(2) Wright, W. B.; Brabander, H. J.; Greenblatt, E. N.; Day, I. P.; Hardy, R. A. J. Med. Chem. 1978, 21, 1087-1089.
(3) Selnick, H. G.; Liverton, N. J.; Baldwin, J. J.; Butcher, J. W.; Claremon, D. A.; Elliotte, J. M.; Freidinger, R. M.; King, S. A.; Libby, B. E.; Mcintyre, C. J.; Pribush, D. A.; Remy, D. C.; Smith, G. R.; Tebben, A. J.; Jurkiewicz, N. K.; Lynch, J. J.; Salata, J. J.; Sanguinetti, M. C.; Siegal, P. K. S.; Slaughter, D. E.; Vyas, K. J. Med. Chem. 1997, 40, 38653868.
(4) Albright, J. D.; Feich, M. F.; Santos, E. G. D.; Dusza, J. P.; Sum, F. W.; Venkatesan, A. M.; Coupet, J.; Chan, P. S.; Ru, X.; Mazandarani, H.; Bailey, T. J. Med. Chem. 1998, 41, 2442-2444.
(5) Breslin, H. J.; Kukla, M. J.; Ludovici, D. W.; Mohrbacher, R.; Ho, W.; Miranda, M.; Rodgers, J. D.; Hitchens, T. K.; Leo, G.; Gauthier, D. A.; Ho, C. Y.; Scott, M. K.; De Clercq, E.; Pauwels, R.; Andries, K.; Janssen, M. A. C.; Janssen, P. A. J. Med. Chem. 1995, 38, 771-793.
(6) Castro, J. L.; Broughton, H. B.; Russell, M. G. N.; Rathbone, D.; Watt, A. P.; Ball, R. G.; Chapman, K. L.; Patel, S.; Smith, A. J.; Marshall, G. R.; Matassa, V. G. J. Med. Chem. 1987, 40, 2491-2501.
(7) Hofmann, H. P.; Ereiskott, H.; Kretzschmar, R. NaunynSchmiedeberg's Arch. Pharmacol. 1982, 32 (suppl), R44.
(8) Müller, W. E.; Groh, B.; Bub, O. Pharmacopsychiatry. 1986, 10, 314-315.
(9) Nicholson, A. N.; Stone, B. M.; Clarke, C. H. Br J Clin Pharmacol. 1977, 4, 567-572.
(10) Kruse, H. Drug Dev. Res. 1982, 2 (suppl 1), 145-151.
(11) Eltze, M.; Gönne, S.; Riedel, R.; Schlotke, B.; Schudt, C.; Simon, W. A. Eur. J. Pharmacol. 1985, 112, 211.
(12) Herpin, T. F.; Van Kirk, K. G.; Salvino, J. M.; Yu, S. T.; Labaudiniere, R. F. J. Comb. Chem. 2000, 2, 513-521.
(13) Claremon, D. A.; Frieidinger, R. M.; Liverton, N.; Selnick, H. G.; Smith, G. R. Novel N-(2,4-dioxo-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-3yl)-3- amides. PCT Int. Appl. WO 9640656.
(14) Zhang, L.; Liu, G.; Zhang, S. D.; Yang, H. Z.; Li, L.; Wu, X. H.; Sun, G. C.; Kou, B. B.; Xu, S.; Ji, Y. F.; Cheng, G. F. J. Comb. Chem. 2004, 6, 431-436.
(15) Li, L.; Liu, G.; Wang, Z. G.; Yuan, Y. Y.; Zhang, C. X.; Wu, X. H.; Zhang, J. J. Comb. Chem. 2004, 6, 811-821.
(16) Zhang, J.; Zhang, L.; Zhang, S. D.; Wang, Y. H.; Liu, G. J. Comb. Chem. 2005, 7, 657-664.
(17) Yang, T. M.; Liu, G. J. Comb. Chem. 2007, 9, 86-95.
(18) Yuan, Y. Y.; Liu, G.; Li, L.; Wang, Z. G.; Wang, L. J. Comb. Chem. 2007, 9, 158-170.
(19) Wang, Z. G.; Yuan, Y. Y.; Chen, Y. Y.; Sun, G. C.; Wu, X. H.; Zhang, S. M.; Han, C. Y.; Wang, G. X.; Li, L.; Liu, G. J. Comb. Chem. 2007, 9, 652-660.
(20) Zhao, H. Y.; Liu, G. J. Comb. Chem. 2007, 9, 756-772.
(21) Mićović, I. V.; Roglić, G. M.; Ivanović, M. D.; DošenMićović, L.; Kiricojević, V. D.; Popović, J. B. J. Chem. Soc., Perkin Trans. 1 1996, 16, 2041-2050.

CC7001149

[^0]: * To whom correspondence should be addressed. Phone: +86-1063167165.Fax: +86-10-63167165. E-mail: gangliu27@ yahoo.com.

